Iris dataset with TensorflowJS

The example from Coursera.

<html>
<head></head>
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
    <script lang="js">
        async function run(){
            const csvUrl = '/data/iris.csv';
            const trainingData = tf.data.csv(csvUrl, {
                columnConfigs: {
                    species: {
                        isLabel: true
                    }
                }
            });
            
            const numOfFeatures = (await trainingData.columnNames()).length - 1;
            const numOfSamples = 150;
            const convertedData =
                  trainingData.map(({xs, ys}) => {
                      const labels = [
                            ys.species == "setosa" ? 1 : 0,
                            ys.species == "virginica" ? 1 : 0,
                            ys.species == "versicolor" ? 1 : 0
                      ] 
                      return{ xs: Object.values(xs), ys: Object.values(labels)};
                  }).batch(10);
            
            const model = tf.sequential();
            model.add(tf.layers.dense({inputShape: [numOfFeatures], activation: "sigmoid", units: 5}))
            model.add(tf.layers.dense({activation: "softmax", units: 3}));
            
            model.compile({loss: "categoricalCrossentropy", optimizer: tf.train.adam(0.06)});
            
            await model.fitDataset(convertedData, 
                             {epochs:100,
                              callbacks:{
                                  onEpochEnd: async(epoch, logs) =>{
                                      console.log("Epoch: " + epoch + " Loss: " + logs.loss);
                                  }
                              }});
            
            // Test Cases:
            
            // Setosa
            const testVal = tf.tensor2d([4.4, 2.9, 1.4, 0.2], [1, 4]);
            
            // Versicolor
            // const testVal = tf.tensor2d([6.4, 3.2, 4.5, 1.5], [1, 4]);
            
            // Virginica
            // const testVal = tf.tensor2d([5.8,2.7,5.1,1.9], [1, 4]);
            
            const prediction = model.predict(testVal);
            const pIndex = tf.argMax(prediction, axis=1).dataSync();
            
            const classNames = ["Setosa", "Virginica", "Versicolor"];
            
            // alert(prediction)
            alert(classNames[pIndex])
            
        }
        run();
    </script>
<body>
</body>
</html>